Provisioning of Differentiated IP Resilience and QoS - An Integrated Approach

Achim Autenrieth
Technische Universität München
Lehrstuhl für Kommunikationsnetze
Email: Autenrieth@ei.tum.de
Homepage: http://www.lkn.ei.tum.de/~achim/

Andreas Kirstädter
Siemens AG
Corporate Research, Information and Communication
Email: andreas.kirstaedter@mchp.siemens.de
Outline

- Motivation
- IP Services & Applications
- MPLS Resilience
- Resilience Differentiated QoS
- Conclusions & Outlook
Motivation

New real-time and connection-oriented services over the Internet

Mission-critical E-Commerce

Explosive growth of the Internet „Everything over IP“

Increasing Demand for QoS and Resilience in IP-Based Networks

- High end-to-end availability is crucial for customers
- Increased QoS and resilience requirements imposed by new services
- Fast and predictable resilience mechanisms are necessary for IP
IP Services and Applications

IP-based networks offer a large variety of services and applications

- WWW
- Email, File Transfers
- E-Commerce, Online Brokerage, Virtual Private Networks
- Voice-over IP (VoIP), IP Telephony, IP Video Conferencing
- Real-time audio and video
- Mission critical Email, mission critical VoIP
- Database transactions
- Interactive games

with very different characteristics and requirements

- QoS: delay, delay jitter, bandwidth
- Resilience: network availability, recovery time
Service Requirements

Resilience requirements of IP services are orthogonal to their "classical" quality-of-service requirements (bandwidth, delay, delay jitter)

<table>
<thead>
<tr>
<th>Application requires traditional QoS</th>
<th>high</th>
<th>low</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>mission-critical VoIP and multimedia services</td>
<td>standard VoIP and multimedia services</td>
</tr>
<tr>
<td>low</td>
<td>database transactions, mission-critical control terminals, e-commerce applications</td>
<td>e-mail, FTP, standard WWW</td>
</tr>
</tbody>
</table>

BUT: No resilience attributes (availability, recovery time) supported by QoS architectures (IntServ, DiffServ)
Multiprotocol Label Switching (MPLS)

- MPLS integrates Layer 3 Routing with Layer 2 Switching
- Introduces connection-oriented characteristics in IP by replacing traditional hop-by-hop IP routing with switching based on labels
- Packets are assigned to Forward Equivalence Classes (FEC) only once at the network ingress
- Packets follow a pre-defined Label Switched Path (LSP)
- Signaling protocols for path setup: CR-LDP & RSVP-TE

A main benefit of MPLS is the ability to support Traffic Engineering methods due to its connection-oriented character (i.e. the forwarding of packets along predefined paths)

MPLS allows to assign different paths through the network for packet flows with same source and destination address, e.g. based on their QoS requirements
MPLS Recovery

- MPLS Recovery is currently a key research issue in the IETF
- Several drafts are published which present recovery mechanisms
- Good “Framework for MPLS-based Recovery” defined in [draft-ietf-mpls-recovery-frmwrk-01.txt]
- Well known resilience concepts from SDH and ATM Recovery are mapped to MPLS

Benefits from MPLS Recovery

- Finer recovery granularity (compared to L1 recovery)
- Protection Selectivity based on Service Requirements possible
- Efficient and flexible resource usage (e.g., recovery path may have reduced performance requirements)
- Allows end-to-end protection of IP services
- Uses lower layer alarm signals (in contrary to IP Rerouting)
MPLS Recovery Options

Recovery models: Protection switching, Rerouting
Path setup: Pre-established, Pre-qualified, Established-on-demand
Resource allocation: Pre-reserved, Reserved-on-demand
Resource use: Dedicated-resource, Extra-traffic-allowed

Source: [draft-ietf-mpls-recovery-frmwrk-01.txt]
MPLS Fast Reroute

- For each LSP an alternative recovery LSP is set up as indicated from the last-hop switch in reverse direction to the source of the working LSP and along a node-disjoint path to the destination switch.
- When a failure is detected (1), the adjacent upstream node immediately switches the working LSP to the recovery LSP (2).

Source: [draft-haskin-mpls-fast-reroute-01.txt]
MPLS Interworking with DiffServ

MPLS offers Resilience Mechanisms

DiffServ offers QoS Classes

MPLS Support of Differentiated Services allows assignment of different resilience levels to different DiffServ classes

Open issue:

How can the level be identified at which a DiffServ class will be protected?
(1+1 / 1:1, dedicated / shared, protected / rerouted)
Resilience-Differentiated QoS

PROPOSAL:

Extended quality-of-service definition: combine the standard QoS-metrics (bandwidth, delay, delay jitter) with resilience requirements of IP service classes

- Resilience attribute included in QoS signaling between the application and the network.
- Depending on QoS architecture (IntServ, DiffServ) this is done on a per flow or on a per packet basis.
- Encoding of resilience attribute should be done either in DS-Field of DiffServ or in Rspec of RSVP. (see [draft-kirstaedter-extqosarch-00.txt])
RD-QoS Resilience Classes

Proposed Resilience Classes (RC) with corresponding recovery options:

<table>
<thead>
<tr>
<th>RC1: High Resilience Requirements</th>
<th>Use of 1+1 or 1:1 protection switching</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC2: Medium Resilience Requirements</td>
<td>Protection switching with On-Demand reservation of resources (recovery path is predefined)</td>
</tr>
<tr>
<td>RC3: Low Resilience Requirements</td>
<td>No resources are reserved / allocated in advance. Traffic recovery requires rerouting and resource reservation.</td>
</tr>
<tr>
<td>RC4: No Resilience Requirements</td>
<td>Corresponding to low-priority, pre-emptible traffic. Packets may be discarded in case of failures.</td>
</tr>
</tbody>
</table>
Application with IntServ

- Application signals resilience requirements to the network in addition to classical QoS requirements.
- Network (additionally) reserves an alternative and disjoint route for the flow (e.g., with constraint based routing).
- Link or node failure: Traffic is sent over alternative route.
Network Management allocates additional resources for traffic with resilience requirements.

Packets with resilience requirements entering the DS domain are marked accordingly.

Link or node failure: network only forwards packets with marked resilience requirements over alternative path.
Interworking with MPLS

Interworking of RD-QoS with MPLS allows a direct mapping of RD-QoS classes to MPLS LSPs with different protection levels according to the negotiated resilience requirements.

Benefits:

- Integrated approach for the provisioning of end-to-end QoS and Resilience
- Direct mapping of Resilience Classes to FECs with appropriate recovery options possible
- Applications define their resilience requirements
 - protection flexibility
 - efficient resource usage
- QoS requirements of high resilience traffic can be met in case of network failures
Conclusions & Outlook

- **Network Resilience** is a key requirement for future IP networks
- **MPLS** is an example where resilience is already taken into account for the development of a new Internet transport model
- **MPLS** and **DiffServ** seems a promising team for the provisioning of end-to-end QoS
- **RD-QoS** architecture extends QoS signaling with resilience requirements
- **RD-QoS** bridges the gap between **DiffServ** classes and **MPLS** protection

Current work: RD-QoS Architecture Implementation